Math, asked by loyalnikku3011970, 10 months ago

prove that (cot x-cos x)/(cot x+cos x)=(cosec x-1)/(cosec x+1)​

Answers

Answered by r4rahulyadav2001
3

Step-by-step explanation:

we \: have \: to \: prove \:  \\  \ \:  \frac{ \cot(x) -  \cos(x)  }{ \cot(x ) +  \cos(x)  }  =  \frac{ cosec(x) - 1}{cosec(x) + 1}  \\ on \: taking \: lhs \:  \\  \\  \\  \frac{ \frac{ \cos(x) }{ \sin(x) }  -  \ \cos(x)  }{ \frac{ \cos(x)  }{ \sin(x) } +  \cos(x)  }  \\ on \: taking \: common \frac{ \cos(x) }{ \sin(x) }  \: in \: both \: numerator \: and \: denominator \\ it \: will \: cancel \: out \: and \: we \: get \:  \\  \frac{1 -  \sin(x) }{1 +  \sin(x) }  \\ we \: cn \: write \: sin(x) =  \frac{1}{cosec(x)}  \\ so \: we \: get \:  \\  \frac{cosec(x) - 1}{cosec(x) + 1}  = rhs \\ hence \:p roved

Hope it will help you

plzz mark me as a brainliest

Answered by Anonymous
1

hííí fσllσw kαr dє nα чrrrrrrrrrr

Similar questions