Math, asked by savitam129, 10 months ago

Prove that cot x /cosec x +1 = cosec x -1/cot x
Please answer it fast

Answers

Answered by Anonymous
1

Answer:

Hope it helps. Follow me friend.

Step-by-step explanation:

Attachments:
Answered by kaushik05
34

 \huge \red{ \mathfrak{solution}}

To prove :

 \frac{ \cot( \alpha ) }{ \csc( \alpha )  + 1}  =  \frac{ \csc( \alpha ) - 1 }{ \cot( \alpha ) }  \\  \\

LHS

 \leadsto \:  \frac{ \cot( \alpha ) }{ \csc( \alpha )  + 1}  \\  \\

Rationalise the denominator,

 \leadsto \:  \frac{ \cot( \alpha ) }{ \csc( \alpha )  + 1}  \times  \frac{ \csc( \alpha ) - 1 }{ \csc( \alpha ) - 1 }  \\  \\  \leadsto \:  \frac{ \cot( \alpha )  \times  (\csc( \alpha )  - 1)}{ {csc}^{2} \alpha  - 1 }  \\  \\  \leadsto \:  \frac{ \cot( \alpha ) \times ( \csc( \alpha ) - 1)  }{ \cot ^{2} ( \alpha ) }  \\  \\  \leadsto \:  \cancel \frac{ \cot( \alpha ) }{ \cot( \alpha ) }  \frac{ \csc( \alpha )  - 1}{ \cot( \alpha ) }  \\  \\  \leadsto \:  \frac{ \csc( \alpha )  - 1}{ \cot( \alpha ) }

LHS=RHS

  \green{\boxed{ \bold{proved}}}

Formula :

csc^2@-cot^2@= 1

(a+b)(a-b)= a^2-b^2

Similar questions