Math, asked by shraddha29mehra, 4 months ago

Prove that: cot x.cot 2x – cot2x.cot 3x – cot 3x.cot x = 1

Answers

Answered by mathdude500
4

\large\underline\blue{\bold{Given \:  Question}}

 \rm \: Prove \:  that :  \: cotxcot2x - cot2xcot3x - cot3xcotx = 1

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\blue{\underline{Formula \:  Used \::}}}}  \end{gathered}

 \boxed{ \pink{ \rm :  \implies \:cot(x + y) = \dfrac{cotx \: coty - 1}{coty + cotx} }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Solution :-  }}

Consider,

 \rm :  \implies \:cot3x \:  = cot(2x + x)

 \rm :  \implies \:cot3x = \dfrac{cot2x \: cotx - 1}{cot2x + cotx}

 \rm :  \implies \:cot3x \: cot2x \:  +  \: cot3x \: cotx \:  =  \: cot2x \: cotx \:  -  \: 1

 \rm :  \implies \:\: cotxcot2x - cot2xcot3x - cot3xcotx = 1

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Explore more:-

Trigonometry Formulas

sin(−θ) = −sin θ

cos(−θ) = cos θ

tan(−θ) = −tan θ

cosec(−θ) = −cosecθ

sec(−θ) = sec θ

cot(−θ) = −cot θ

Product to Sum Formulas

sin x sin y = 1/2 [cos(x–y) − cos(x+y)]

cos x cos y = 1/2[cos(x–y) + cos(x+y)]

sin x cos y = 1/2[sin(x+y) + sin(x−y)]

cos x sin y = 1/2[sin(x+y) – sin(x−y)]

Sum to Product Formulas

sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]

sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]

cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]

cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]

Sum or Difference of angles

cos (A + B) = cos A cos B – sin A sin B

cos (A – B) = cos A cos B + sin A sin B

sin (A+B) = sin A cos B + cos A sin B

sin (A -B) = sin A cos B – cos A sin B

tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]

tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]

cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]

cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]

cos(A+B) cos(A–B)=cos^2A–sin^2B=cos^2B–sin^2A

sin(A+B) sin(A–B) = sin^2A–sin^2B=cos^2B–cos^2A

Multiple and Submultiple angles

sin2A = 2sinA cosA = [2tan A /(1+tan²A)]

cos2A = cos²A–sin²A = 1–2sin²A = 2cos²A–1= [(1-tan²A)/(1+tan²A)]

tan 2A = (2 tan A)/(1-tan²A)

Similar questions