Math, asked by isaiahmark95, 19 days ago

prove that -cot x = sin 3x + sin x / cos 3x - cos x​

Answers

Answered by NightSparkle
13

\huge \sf \red {\underline { Appreciate \: Question}} </p><p>

To Prove That :-

 \\( sin3x \:  + sinx)sin(x) + (cos3x - cosx)cosx \:  = 0

\huge \sf \red {\underline {Solution \div }} </p><p>

Using identity :-

 \ \sf \:  \sin(x)  +  \sin(y)  =  \\ 2sin( \frac{x + y}{2} )cos( \frac{x - y}{2} ) \\   \large \ \sf \: or \\  \cos(x)  +  \cos(y)  = 2sin( \frac{x + y}{2} )sin( \frac{x - y}{2} )

L.H.S. =

 \\  \\   = [2sin( \frac{3x + x}{2} )cos( \frac{3x - x}{2} )] -  \\  \\    = [2sin( \frac{3x + x}{2} )sin( \frac{3x - x}{2} )] \\  \\  = sin2xcos2xsinx - 2sin2xcosxsinx

= 0 = R.H.S

LHS = RHS

_________________________________

Similar questions