Math, asked by poojagc2003, 1 year ago

Prove that cot(x-y)=cotx×coty+1/ coty-cotx

Answers

Answered by lokeshnandigam69
1

Answer:

HOPE IT HELPS YPU MY DEAR

Attachments:
Answered by AnkitaSahni
0

Given:

cot(x-y)=cotx×coty+1/ coty-cotx

To find:

To prove cot(x-y)=cotx×coty+1/ coty-cotx

Solution:

consider,

L.H.S = $\cot x-y$

As we know the trigonometric identity of $\cot x-y$ is  $\frac{1+\tan x \cdot \tan y}{\tan x-\tan y}$

So,

         $=\frac{1+\tan x \tan y}{\tan x-\tan y}

Divide the numerator and denominator with \tan x \cdot \tan y  

         =\frac{\frac{1}{\tan x \cdot \tan y}+\frac{\tan x \tan y}{\tan x \cdot \tan y}}{\frac{\tan x-\tan y}{\tan x \cdot \tan y}}$\\

         $\frac{\cot x \cdot \cot y+1}{\frac{1}{\tan y}-\frac{1}{\tan x}}

          = \frac{\cot x \cot y+1}{\cot y-\cot x}

          =\mathrm{R} \cdot \mathrm{H} \cdot \mathrm{S}$

Hence proved cot(x-y)=cotx×coty+1/ coty-cotx

#SPJ2

Similar questions