Math, asked by nehalgumble, 1 year ago

Prove that:
cot0 /cosec 0 +1
+ cosec 0+1/ cot0
= 2sec0​

Attachments:

Answers

Answered by Anonymous
4

 \frac{ \cot \alpha  }{ \csc \alpha + 1  }  +  \frac{ \csc \alpha + 1  }{  \cot \alpha   }  \\  \\  =  >  \frac{ { \cot }^{2}  \alpha  +  {( \csc \alpha + 1)  }^{2} }{ \cot \alpha ( \csc \alpha + 1)  }  \\  \\  =  >  \frac{ { \cot}^{2}  \alpha  +  { \csc}^{2} \alpha  + 1 + 2 \csc\alpha   }{ \cot\alpha \csc\alpha   +  \cot \alpha }  \\  \\  =  >  \frac{2 { \csc }^{2} \alpha  + 2 \csc\alpha   }{ \cot \alpha ( \csc\alpha + 1) }  \\  \\  =  >  \frac{2 \csc\alpha( \csc \alpha  + 1)   }{ \cot\alpha ( \csc \alpha  + 1) }  \\  \\  =  > \frac{2 \csc \alpha }{ \cot \alpha  }  =  \frac{ \frac{2}{ \sin \alpha  } }{ \frac{ \cos \alpha  }{ \sin\alpha  } }  \\  \\  =  >  \frac{2}{ \cos \alpha  }  = 2 \sec\alpha

{ Here, cosec²A = 1+cot²A }

HENCE PROVED

I hope it will be helpful for you ✌️✌️

Mark it as brainliest and follow me ☺️☺️

Similar questions