Prove that: cot15degree+cot75degree=sec^215degree/(root over sec^215degree-1)
Answers
Step-by-step explanation:
Given:
{\star{\sf{ \: 4 {x}^{2} - 4x - 8 }}}⋆4x
2
−4x−8
{\bf{\blue{\underline{Now:}}}}
Now:
Divide by 4,
\begin{lgathered}{ : \implies{\sf{ \: {x}^{2} - x - 2 = 0 }}}\\ \\\end{lgathered}
:⟹x
2
−x−2=0
\begin{lgathered}{ : \implies{\sf{ \: {x}^{2} - 2x + x- 2 = 0 }}}\\ \\\end{lgathered}
:⟹x
2
−2x+x−2=0
\begin{lgathered}{ : \implies{\sf{ \: x(x - 2) - 1(x - 2) = 0 }}}\\ \\\end{lgathered}
:⟹x(x−2)−1(x−2)=0
\begin{lgathered}{ : \implies{\sf{ \: (x + 1)(x - 2) = 0 }}}\\ \\\end{lgathered}
:⟹(x+1)(x−2)=0
Take,
\begin{lgathered}{ : \implies{\sf{ \: (x + 1) = 0 \: \: \: \: \: \: and \: \: \: \: \: (x - 2) = 0 }}}\\ \\\end{lgathered}
:⟹(x+1)=0and(x−2)=0
\begin{lgathered}{ : \implies{ {\boxed{\sf{ \: x = - 1}} \: \: \: \: \: \: and \: \: \: \: \: { \boxed { \sf\: x = 2 }}}}}\\ \\\end{lgathered}
:⟹
x=−1
and
x=2
So, the value of 4x²-4x-8 is zero when x=-1,2
Therefore,the zeros of 4x²-4x-8 are -1 and 2.
Now,
\begin{lgathered}\star\boxed{\sf{ \purple {Sum \: of \: zeros \: = \frac{ - (Coefficient \: of \: x)}{Coefficient \: of \: {x}^{2} } }}}\\ \\\end{lgathered}
⋆
Sumofzeros=
Coefficientofx
2
−(Coefficientofx)
\begin{lgathered}{ : \implies{\sf{ - 1 + 2 = \frac{ - ( - 4)}{ 4} }}}\\ \\\end{lgathered}
:⟹−1+2=
4
−(−4)
\begin{lgathered}{ : \implies{\sf{ 1 = \frac{ - ( - 1)}{ 1} }}}\\ \\\end{lgathered}
:⟹1=
1
−(−1)
\begin{lgathered}{ : \implies \boxed{\sf{ 1 = 1 }}}\\ \\\end{lgathered}
:⟹
1=1
\begin{lgathered}\star\boxed{\sf{ \purple {Product \: of \: zeros \: = \frac{ constant \: term}{coefficient \: of \: {x}^{2} } }}}\\ \\\end{lgathered}
⋆
Productofzeros=
coefficientofx
2
constantterm
\begin{lgathered}{ : \implies {\sf{ ( - 1 )(2) = \frac{ - 8}{4} }}}\\ \\\end{lgathered}
:⟹(−1)(2)=
4
−8
: \implies\boxed {\sf{ - 2 = - 2 }}:⟹
−2=−2
Hence Verified.