prove that cot2(90- theta) / tan 2 theta - 1 + cosec2theta / sec2theta - cos2theta = 1 / sin2theta - cos2theta
Answers
Answer:
Step-by-step explanation:
Answer:
\frac{tan^{2}\theta}{tan^{2}\theta-1}+\frac{cosec^{2}\theta}{sec^{2}\theta-cosec^{2}\theta}=\frac{1}{sin^{2}\theta-cos^{2}\theta}
Step-by-step explanation:
LHS=\frac{tan^{2}\theta}{tan^{2}\theta-1}+\frac{cosec^{2}\theta}{sec^{2}\theta-cosec^{2}\theta}
=\frac{\frac{sin^{2}\theta}{cos^{2}\theta}}{\frac{sin^{2}\theta}{cos^{2}\theta}-1}+\frac{\frac{1}{sin^{2}\theta}}{\frac{1}{cos^{2}\theta}-\frac{1}{sin^{2}\theta}}
=\frac{\frac{sin^{2}\theta}{cos^{2}\theta}}{\frac{sin^{2}\theta-cos^{2}\theta}{cos^{2}\theta}}+\frac{\frac{1}{sin^{2}\theta}}{\frac{sin^{2}\theta-cos^{2}\theta}{cos^{2}\theta sin^{2}\theta}}
=\frac{sin^{2}\theta}{sin^{2}\theta-cos^{2}\theta}+\frac{cos^{2}\theta}{sin^{2}\theta-cos^{2}\theta}
=\frac{sin^{2}\theta+cos^{2}\theta}{sin^{2}\theta-cos^{2}\theta}
=\frac{1}{sin^{2}\theta-cos^{2}\theta}\\=RHS
Therefore,
\frac{tan^{2}\theta}{tan^{2}\theta-1}+\frac{cosec^{2}\theta}{sec^{2}\theta-cosec^{2}\theta}=\frac{1}{sin^{2}\theta-cos^{2}\theta}
•••♪
Click to let others know, how helpful is it