Math, asked by pillaishruti28, 4 months ago

Prove that { cot2 A ( sec A -1) } / ( 1 + sin A) = sec2 A { ( 1 -sin A ) / ( 1 + sec A)}




Pls help at the earliest

Answers

Answered by MaheswariS
3

\textbf{To prove:}

\mathsf{cot^2A\left(\dfrac{secA-1}{1+sinA}\right)=sec^2A\left(\dfrac{1-sinA}{1+secA}\right)}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{cot^2A\left(\dfrac{secA-1}{1+sinA}\right)}

\mathsf{=(cosec^2A-1)\left(\dfrac{secA-1}{1+sinA}\right)}

\mathsf{=\left(\dfrac{1}{sin^2A}-1\right)\left(\dfrac{secA-1}{1+sinA}\right)}

\mathsf{=\left(\dfrac{1-sin^2A}{sin^2A}\right)\left(\dfrac{secA-1}{1+sinA}\right)}

\mathsf{=\left(\dfrac{1^2-sin^2A}{1-cos^2A}\right)\left(\dfrac{secA-1}{1+sinA}\right)}

\mathsf{=\left(\dfrac{(1-sinA)(1+sinA)}{1-\dfrac{1}{sec^2A}}\right)\left(\dfrac{secA-1}{1+sinA}\right)}

\mathsf{=\left(\dfrac{1-sinA}{\dfrac{sec^2A-1}{sec^2A}}\right)(secA-1)}

\mathsf{=sec^2A\left(\dfrac{1-sinA}{sec^2A-1^2}\right)(secA-1)}

\mathsf{=sec^2A\left(\dfrac{1-sinA}{secA+1}\right)}

\implies\boxed{\mathsf{cot^2A\left(\dfrac{secA-1}{1+sinA}\right)=sec^2A\left(\dfrac{1-sinA}{1+secA}\right)}}

\textbf{Find more:}

Prove that 1-sin^2x/1+cotx-cos^2x/1+tanx=sinxcossx

https://brainly.in/question/4927186

Tan(π/4+x)-tan(π/4-x)=2tan 2x

https://brainly.in/question/10999329

Answered by RvChaudharY50
25

Question :- Prove that {cot²A(sec A -1)} / ( 1 + sin A) = sec² A {( 1 -sin A) / (1 + sec A)}

Solution :-

solving LHS,

→ {cot²A(sec A -1)} / ( 1 + sin A)

Multiply and divide by {(1 - sin A) / (1 - sin A) = 1} and {(sec A + 1) /(sec A + 1)}

→ [{cot²A(sec A -1)} / ( 1 + sin A)] * {(1 - sin A) / (1 - sin A)} * {(sec A + 1) /(sec A + 1)}

Solving Numerator now,

  • cot²A * (sec A -1) * (1 - sin A) * (sec A + 1)
  • cot²A * (sec A -1) * (sec A + 1) * (1 - sin A)
  • using (a + b)(a - b) = a² - b²
  • cot²A * (sec²A - 1) * (1 - sin A)
  • using (sec²A - 1) = tan²A
  • cot²A * tan²A * (1 - sin A)
  • we know that, cot²A = (1/tan²A)
  • (1/tan²A) * tan²A * (1 - sin A)
  • (1 - sin A)

Solving Denominator now,

  • (1 + sinA) * (1 - sinA) * (sec A + 1)
  • using (a + b)(a - b) = a² - b²
  • (1 - sin²A) * (sec A + 1)
  • using (1 - sin²A) = cos²A
  • cos²A(sec A + 1)
  • cos²A(1 + sec A)
  • using cos²A = (1/sec²A) now,
  • (1/sec²A)(1 + secA)

therefore, we get,

→ (1 - sinA) /{(1/sec²A)(1 + secA)}

→ sec²A(1 - sin A) / (1 + sec A) = RHS . (Proved.)

Learn more :-

prove that cosA-sinA+1/cos A+sinA-1=cosecA+cotA

https://brainly.in/question/15100532

help me with this trig.

https://brainly.in/question/18213053

Similar questions