Prove that
cot2 A (sec A-1/1+sin A) + sec2 A(sin A+1/1+ sec A) = 0.
Answers
Question :- Prove that {cot²A(sec A -1)} / ( 1 + sin A) + sec² A {(sin A - 1) / (1 + sec A)} = 0
Solution :-
solving first part of the question,
→ {cot²A(sec A -1)} / ( 1 + sin A)
Multiply and divide by {(1 - sin A) / (1 - sin A) = 1} and {(sec A + 1) /(sec A + 1)}
→ [{cot²A(sec A -1)} / ( 1 + sin A)] * {(1 - sin A) / (1 - sin A)} * {(sec A + 1) /(sec A + 1)}
Solving Numerator now,
- cot²A * (sec A -1) * (1 - sin A) * (sec A + 1)
- cot²A * (sec A -1) * (sec A + 1) * (1 - sin A)
- using (a + b)(a - b) = a² - b²
- cot²A * (sec²A - 1) * (1 - sin A)
- using (sec²A - 1) = tan²A
- cot²A * tan²A * (1 - sin A)
- we know that, cot²A = (1/tan²A)
- (1/tan²A) * tan²A * (1 - sin A)
- (1 - sin A)
Solving Denominator now,
- (1 + sinA) * (1 - sinA) * (sec A + 1)
- using (a + b)(a - b) = a² - b²
- (1 - sin²A) * (sec A + 1)
- using (1 - sin²A) = cos²A
- cos²A(sec A + 1)
- cos²A(1 + sec A)
- using cos²A = (1/sec²A) now,
- (1/sec²A)(1 + secA)
therefore, we get,
→ (1 - sinA) /{(1/sec²A)(1 + secA)}
→ sec²A(1 - sin A) / (1 + sec A)
taking (-1) common now,
→ (-1)[sec²A(sin A - 1) / (1 + sec A)]
hence, Putting this value in question now, we get,
→ (-1)[sec²A(sin A - 1) / (1 + sec A)] + sec²A{(sin A - 1) / (1 + sec A)}
→ sec²A{(sin A - 1) / (1 + sec A)}[ (-1) + 1) ]
→ sec²A{(sin A - 1) / (1 + sec A)} * 0
→ 0 . (Hence, Proved.)
Learn more :-
prove that cosA-sinA+1/cos A+sinA-1=cosecA+cotA
https://brainly.in/question/15100532
help me with this trig.
https://brainly.in/question/18213053