Math, asked by filmyshilmy63, 5 months ago

Prove that
cot2 A (sec A-1/1+sin A) + sec2 A(sin A+1/1+ sec A) = 0.

Answers

Answered by RvChaudharY50
20

Question :- Prove that {cot²A(sec A -1)} / ( 1 + sin A) + sec² A {(sin A - 1) / (1 + sec A)} = 0

Solution :-

solving first part of the question,

→ {cot²A(sec A -1)} / ( 1 + sin A)

Multiply and divide by {(1 - sin A) / (1 - sin A) = 1} and {(sec A + 1) /(sec A + 1)}

→ [{cot²A(sec A -1)} / ( 1 + sin A)] * {(1 - sin A) / (1 - sin A)} * {(sec A + 1) /(sec A + 1)}

Solving Numerator now,

  • cot²A * (sec A -1) * (1 - sin A) * (sec A + 1)
  • cot²A * (sec A -1) * (sec A + 1) * (1 - sin A)
  • using (a + b)(a - b) = a² - b²
  • cot²A * (sec²A - 1) * (1 - sin A)
  • using (sec²A - 1) = tan²A
  • cot²A * tan²A * (1 - sin A)
  • we know that, cot²A = (1/tan²A)
  • (1/tan²A) * tan²A * (1 - sin A)
  • (1 - sin A)

Solving Denominator now,

  • (1 + sinA) * (1 - sinA) * (sec A + 1)
  • using (a + b)(a - b) = a² - b²
  • (1 - sin²A) * (sec A + 1)
  • using (1 - sin²A) = cos²A
  • cos²A(sec A + 1)
  • cos²A(1 + sec A)
  • using cos²A = (1/sec²A) now,
  • (1/sec²A)(1 + secA)

therefore, we get,

→ (1 - sinA) /{(1/sec²A)(1 + secA)}

→ sec²A(1 - sin A) / (1 + sec A)

taking (-1) common now,

(-1)[sec²A(sin A - 1) / (1 + sec A)]

hence, Putting this value in question now, we get,

→ (-1)[sec²A(sin A - 1) / (1 + sec A)] + sec²A{(sin A - 1) / (1 + sec A)}

→ sec²A{(sin A - 1) / (1 + sec A)}[ (-1) + 1) ]

→ sec²A{(sin A - 1) / (1 + sec A)} * 0

0 . (Hence, Proved.)

Learn more :-

prove that cosA-sinA+1/cos A+sinA-1=cosecA+cotA

https://brainly.in/question/15100532

help me with this trig.

https://brainly.in/question/18213053

Similar questions