Prove that cot2 theta + cosec2 theta = cosec4 theta – cot4 theta.
Answers
Answered by
4
GIVEN:
- cot² θ + cosec² θ = cosec⁴ θ – cot⁴ θ
TO PROVE:
- cot² θ + cosec² θ = cosec⁴ θ – cot⁴ θ
FORMUALE USED:
PROOF:
METHOD 1:
Take cot² θ + cosec² θ as L.H.S and cosec⁴ θ – cot⁴ θ as R.H.S.
Take the R.H.S
1(cot² θ + cosec² θ)
(cosec² θ + cot² θ)(cosec² θ – cot² θ)
Apply (A + B)(A - B) = A² - B²
cosec⁴ θ – cot⁴ θ
L.H.S = R.H.S
cot² θ + cosec² θ = cosec⁴ θ – cot⁴ θ
HENCE PROVED.
METHOD 2:
Take cot² θ + cosec² θ as L.H.S and cosec⁴ θ – cot⁴ θ as R.H.S.
Take the R.H.S
cosec⁴ θ – cot⁴ θ
Apply A² - B² = (A + B)(A - B)
(cosec² θ + cot² θ)(cosec² θ – cot² θ)
(cosec² θ – cot² θ) = 1
(cosec² θ + cot² θ) = L.H.S
L.H.S = R.H.S
cot² θ + cosec² θ = cosec⁴ θ – cot⁴ θ
HENCE PROVED.
Similar questions