Math, asked by heerpithadia, 3 months ago

Prove that cot2θ X sec2θ = cot2θ+1​

Answers

Answered by MaheswariS
3

\textbf{To prove:}

\mathsf{cot^2\theta{\times}sec^2\theta=cot^2\theta+1}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{cot^2\theta{\times}sec^2\theta}

\mathsf{Using,}

\boxed{\mathsf{sec^2A=1+tan^2A}}

\mathsf{=cot^2\theta(1+tan^2\theta)}

\mathsf{=cot^2\theta+cot^2\theta{\times}tan^2\theta)}

\mathsf{=cot^2\theta+\left(\dfrac{1}{tan^2\theta}{\times}tan^2\theta\right)}

\mathsf{=cot^2\theta+1}

\implies\boxed{\mathsf{cot^2\theta{\times}sec^2\theta=cot^2\theta+1}}

\textbf{Find more:}

Prove that 1-sin^2x/1+cotx-cos^2x/1+tanx=sinxcossx

https://brainly.in/question/4927186

Similar questions