Math, asked by futurezgame, 2 months ago

Prove that: cot²A - cos²A = cos²A·cot²A

Answers

Answered by Tan201
1

Step-by-step explanation:

To prove:-

cot^{2}A-cos^{2}A=cos^{2}A · cot^{2}A

Proof:-

LHS=cot^{2}A-cos^{2}A

\frac{cos^{2}A}{sin^{2}A}-\frac{cos^{2}A}{1} (cotA=\frac{cosA}{sinA} )

\frac{cos^{2}A-sin^{2}Acos^{2}A}{sin^{2}A}

\frac{cos^{2}A(1-sin^{2}A)}{sin^{2}A}

\frac{cos^{2}A(cos^{2}A)}{sin^{2}A} (cos^{2}A=1-sin^{2}A)

\frac{cos^{4}A}{sin^{2}A}

RHS=cos^{2}A · cot^{2}A

\frac{cos^{2}A}{1} (\frac{cos^{2}A}{sin^{2}A})  (cotA=\frac{cosA}{sinA} )

\frac{cos^{4}A}{sin^{2}A}

\frac{cos^{4}A}{sin^{2}A}=\frac{cos^{4}A}{sin^{2}A}

LHS=RHS

cot^{2}A-cos^{2}A=cos^{2}A · cot^{2}A

Hence proved.

Similar questions