Math, asked by archivalgraph09, 5 months ago

prove that cot²A-cos²A=cot²A cos²A​

Answers

Answered by anindyaadhikari13
4

Required Answer:-

Given to prove:

  •  \sf \cot^{2} (x)  -  \cos^{2} (x)  =  \cot^{2} (x)  \cos^{2} (x)

Proof:

Taking LHS,

 \sf \cot^{2} (x) -  \cos^{2} (x)

 \sf =  \frac{1}{ { \tan}^{2}(x) }  -  \frac{1}{ { \sec}^{2}(x)}

 \sf =  \frac{ \sec^{2} (x) -  { \tan}^{2}(x)}{ { \tan}^{2}(x)  \sec^{2} (x) }

We know that,

 \sf \sec^{2} (x) -  \tan^{2} (x)  = 1

So, we get,

 \sf =  \frac{ 1}{ { \tan}^{2}(x)  \sec^{2} (x) }

 \sf =  \cot^{2} (x)  \cos^{2} (x)

Taking RHS,

 \sf =  \cot^{2} (x)  \cos^{2} (x)

Hence, LHS = RHS

So,

 \sf \blue{ \cot^{2} (x)  -  \cos^{2} (x)  =  \cot^{2} (x)  \cos^{2} (x)}

Hence Proved.

Note:

  • tan(x) is the reciprocal of cot(x)
  • sec(x) is the reciprocal of cos(x)

Formula Used:

  • sec²(x) - tan²(x) = 1
Similar questions