prove that cot2A(secA-1/1+sinA) + sec2A(sinA-1/1+secA) = 0
Answers
Answered by
152
cot²A(secA-1/1+sinA)+sec²A(sinA-1/1+secA)=0
L.H.S.
cot²A(secA-1/1+sinA)+sec²A(sinA-1/1+secA)
=cot²A[(secA-1)(1-sinA)/(1+sinA)(1-sinA)]+sec²A[(sinA-1)(secA-1)/(secA+1)(secA-1)]
=cot²A[(secA-secA.sinA-1+sinA)/(1-sin²A)]+sec²A[(sinA.secA-sinA-secA+1)/(sec²A-1)]
=cot²A[(secA-secA.sinA-1+sinA)/cos²A]+sec²A[(sinA.secA-sinA-secA+1)/tan²A]
=(cos²A/sin²A)[(secA-secA.sinA-1+sinA)/cos²A]+[sec²A(sinA.secA-sinA-secA+1)](cos²A/sin²A)
=[(secA-secA.sinA-1+sinA)/sin²A]+[(sinA.secA-sinA-secA+1)/sin²A]
=(secA-secA.sinA-1+sinA+sinA.secA-sinA-secA+1)/sin²A
=0/sin²A
=0
R.H.S=L.H.S
Hence proved…
Answered by
269
i hope it help you...
Attachments:
Similar questions
Math,
8 months ago
Social Sciences,
8 months ago
Sociology,
8 months ago
Math,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago
Math,
1 year ago