Math, asked by sayajiraogaikw, 1 year ago

prove that cot2A(secA-1/1+sinA) + sec2A(sinA-1/1+secA) = 0

Answers

Answered by sachinkumar121
152

cot²A(secA-1/1+sinA)+sec²A(sinA-1/1+secA)=0

L.H.S.

cot²A(secA-1/1+sinA)+sec²A(sinA-1/1+secA)

=cot²A[(secA-1)(1-sinA)/(1+sinA)(1-sinA)]+sec²A[(sinA-1)(secA-1)/(secA+1)(secA-1)]

=cot²A[(secA-secA.sinA-1+sinA)/(1-sin²A)]+sec²A[(sinA.secA-sinA-secA+1)/(sec²A-1)]

=cot²A[(secA-secA.sinA-1+sinA)/cos²A]+sec²A[(sinA.secA-sinA-secA+1)/tan²A]

=(cos²A/sin²A)[(secA-secA.sinA-1+sinA)/cos²A]+[sec²A(sinA.secA-sinA-secA+1)](cos²A/sin²A)

=[(secA-secA.sinA-1+sinA)/sin²A]+[(sinA.secA-sinA-secA+1)/sin²A]

=(secA-secA.sinA-1+sinA+sinA.secA-sinA-secA+1)/sin²A

=0/sin²A

=0

R.H.S=L.H.S

Hence proved…

Answered by jashanjatana12274
269
i hope it help you...
Attachments:
Similar questions