prove that
cot³A. sin³A. tan³A. cos³A.
---------------------- + ------------------
(cosA+sinA)² (cosA+sinA)²
= secA. cosecA-1
-----------------------
cosecA+secA
Answers
||✪✪ QUESTION ✪✪||
prove that
[cot³A.sin³A/(cosA+sinA)²] + [tan³A. cos³A / (cosA+sinA)² ]
= (secA. cosecA-1)/(cosecA+secA)
|| ✰✰ ANSWER ✰✰ ||
Solving LHS, First :-
→ [cot³A.sin³A/(cosA+sinA)²] + [tan³A. cos³A / (cosA+sinA)² ]
Putting cotA = cosA/sinA and TanA = sinA/cosA in Numerator , we get,
→ [(cos³A/sin³A).sin³A/(cosA+sinA)²] + [(sin³A/cos³A). cos³A / (cosA+sinA)² ]
→ [ cos³A / (cosA+sinA)²] + [(sin³A / (cosA+sinA)² ]
Taking LCM now, we get,
→ [ ( cos³A + sin³A) / (cosA + sinA)² ]
Now using a³ + b³ = (a+b)(a² + b² - ab) in Numerator ,
→ [ (cosA+sinA)(cos²A+sin²A - cosA*sinA) / (cosA + sinA)² ]
Now, (cosA+sinA) will be cancel ,
→ [ (cos²A+sin²A - cosA*sinA) / (cosA + sinA) ]
Putting cos²A+sin²A = 1 now,
→ [ ( 1 - cosA*sinA) / (cosA + sinA) ] ------------ Equation (1)
______________________________
Now, Solving RHS part :-
→ (secA.cosecA - 1)/(cosecA+secA)
Putting CosecA = 1/sinA and SecA = 1/cosA we get,
→ [ {(1/cosA)*(1/sinA) - 1} / { (1/sinA + (1/cosA)} ]
Taking LCM in both Numerator And Denominator Now, we get,
→ [{(1 - cosA*sinA) / ( sinA*cosA)} / { (cosA + sinA) / (sinA*cosA) } ]
Now, Both Denominator part (sinA*cosA) will be cancel ,
So, we get,
→ [ (1 - cosA*SinA) / (cosA + sinA) ] -------------- Equation (2)
_____________________________
As we can see Now,
☞ Equation (1) = Equation (2)
So,
☛ LHS = RHS .
✪✪ Hence Proved ✪✪
_________________________
QUESTION
prove that,