prove that cot4x(sin5x+sin3x)= cotx(sin5x-sin3x)
Answers
Answered by
98
LHS=cot4x (sin5x+sin3x)
=cot4x.2sin4x.cosx
=2(cos4x/sin4x)sin4x. cosx
=2co4x.cosx
=2cos4x. sinx.cotx
=cotx(2sinx.cos4x)
=cotx(sin5x-sin3x)=RHS
=cot4x.2sin4x.cosx
=2(cos4x/sin4x)sin4x. cosx
=2co4x.cosx
=2cos4x. sinx.cotx
=cotx(2sinx.cos4x)
=cotx(sin5x-sin3x)=RHS
abhi178:
please mark as brainliest
Answered by
0
Answer:LHS=cot4x (sin5x+sin3x)
=cot4x.2sin4x.cosx
=2(cos4x/sin4x)sin4x. cosx
=2co4x.cosx
=2cos4x. sinx.cotx
=cotx(2sinx.cos4x)
=cotx(sin5x-sin3x)=RHS
Step-by-step explanation:
Similar questions