Prove that :-
cot4x(sin5x + sin3x) = cotx ( sin5x - sin3x)
Answers
Answered by
9
LHS=cot4x (sin5x+sin3x)
=cot4x.2sin4x.cosx
=2(cos4x/sin4x)sin4x. cosx
=2co4x.cosx
=2cos4x. sinx.cotx
=cotx(2sinx.cos4x)
=cotx(sin5x-sin3x)=RHS
=cot4x.2sin4x.cosx
=2(cos4x/sin4x)sin4x. cosx
=2co4x.cosx
=2cos4x. sinx.cotx
=cotx(2sinx.cos4x)
=cotx(sin5x-sin3x)=RHS
Answered by
16
Taking Left hand side
cot4x(sin5x + sin3x)
= 2cos4xcosx
Now,
Right Hand side
cotx(sin5x - sin3x)
= 2cos4xcosx
Hence Proved
LHS = RHS
Similar questions