Math, asked by paras7397, 3 months ago

prove that cotA÷1-cotA + tanA÷1-tanA =-1​

Attachments:

Answers

Answered by abhi569
7

⇒ cotA/(1 - cotA) + tanA/(1 - tanA)

    Solving cotA/(1 - cotA) :

⇒ (1/tanA)/(1 - 1/tanA)

⇒ (1/tanA) / ((tanA - 1)/tanA)

⇒ (tanA/tanA) / (tanA - 1)

⇒ 1/(tanA - 1)

⇒ - 1/(1 - tanA)

∴ cotA/(1 - cotA) + tanA/(1 - tanA)

⇒ - 1/(1 - tanA) + tanA/(1 - tanA)

⇒ (- 1 + tanA)/(1 - tanA)

⇒ - (1 - tanA)/(1 - tanA)

⇒ - 1       proved

Answered by BRAINLYxKIKI
36

 {\fcolorbox{aqua}{black}{\purple{Here's\:the\:Answer\:»  }}}

\implies \sf{\red{\dfrac{cot A}{1 - cot A} + \dfrac{tan A}{1 - tan A} \:=\: -1 }}

  •  \sf{\green{\dfrac{cot A}{ 1 - cot A }}}

\implies \sf{\dfrac{\dfrac{1}{tanA}}{1 - \dfrac{1}{tanA}}}

\implies \sf{\dfrac{\dfrac{1}{tanA}}{\bigg( \dfrac{ ( tanA - 1 ) }{tanA}\bigg)}}

 \implies \sf{\dfrac{\bigg( \dfrac{tanA}{tanA} \bigg)}{( tanA - 1 )}}

\implies \sf{\dfrac{1}{( tanA - 1 )}}

 \implies \sf{\dfrac{-1}{(1 - tanA)}}

ㅤㅤㅤ

 \therefore \sf{\dfrac{cotA}{(1 - cotA)} + \dfrac{tanA}{( 1 - tanA )}}

\implies \sf{\dfrac{-1}{( 1 - tanA )} + \dfrac{tanA}{( 1 - tanA )}}

 \implies \sf{\dfrac{( -1 + tanA )}{(1 - tanA)}}

 \implies \sf{- \dfrac{{( 1 - tanA )}}{( 1 - tanA )}}

 \implies \sf{\orange{ -1 }} \:=\: \bf{R.H.S}

ㅤㅤㅤ

ㅤㅤㅤ ʙʀɪɴʟʏ×ɪɪ

Similar questions