prove that cotA/1-cotA +tanA/1-tanA =-1
Answers
Answered by
0
Answer:
(TanA/1-cotA)+(cotA/1-tanA)=1+tanA+cotA
Let us start with LHS
= tanA/1-cotA + cotA/1-tanA
= tanA/1-1/tanA + 1/tanA/1-tanA
= tanA/tanA-1/tanA + 1/tanA(1-tanA)
= tan 2A/tanA-1 – 1/tanA(tanA-1)
= tan 3A-1/tanA(tanA-1)
= (tanA-1)(tan 2A+1+tanA)/tanA(tanA-1)
= tan 2A/tanA + 1/tanA + tanA/tanA
= tanA + cotA + 1
= 1+ tanA + cotA
= RHS
Hence Proved
Step-by-step explanation:
HOPE IT HELPS.
PLEASE MARK ME AS THE BRAINLIEST.
Similar questions
Biology,
9 days ago
Math,
9 days ago
Environmental Sciences,
9 days ago
Math,
18 days ago
Social Sciences,
9 months ago
Social Sciences,
9 months ago