Math, asked by PurvaMunde, 3 months ago

Prove that CotA/1-tanA+TanA/1-cotA=1+tanA+cotA=secA×cosecA+1​

Attachments:

Answers

Answered by sahilsharma705011
1

Step-by-step explanation:

please give me thanks and mark me brilient ☺️

Attachments:
Answered by Anonymous
4

GIVEN:- tanA/(1- cotA) + cotA/(1 - tanA)

sinA/cosA + cosA/sinA 1-cosA/sinA 1-sinA/cos.A

sin² A cosA (sinA-cosA) + cos² A sinA (cosA-sinA)

sin² A cosA (sinA-cosA) cos² A sinA (sinA-cosA)

sin³ A-cos³ A sinA.cosA(sinA-cos)

(sinA cosA) (sin² A+ cos² A+sinAcosA) [as, a³ - b³ = (a - b)(a² + b² + ab) & (sin²0 +

sinA.cosA(sin cosA)

cos²0 = 1]

(1+sinA.cosA) sinA.cosA

1 sinA.cosA

sinA.cosA sinA.cos.A

secA.cosecA + 1

tanA (1-1/tanA)

(1/tanA) (1-tanA)

tan² A (tanA-1) 1 tanA(1-tanA)

1 tan(1-tanA

1-tan³ A tanA (1-tanA)

tan² A (1-tanA)

(1-tanA){(1+tan² A)+tanA} tanA (1-tanA)

sec² A+tanA tanA

1 cos² A cosAsinA + tanA tanA

secA.cosecA + 1

Similar questions