Prove that CotA/1-tanA+TanA/1-cotA=1+tanA+cotA=secA×cosecA+1
Attachments:
Answers
Answered by
1
Step-by-step explanation:
please give me thanks and mark me brilient ☺️
Attachments:
Answered by
4
GIVEN:- tanA/(1- cotA) + cotA/(1 - tanA)
sinA/cosA + cosA/sinA 1-cosA/sinA 1-sinA/cos.A
sin² A cosA (sinA-cosA) + cos² A sinA (cosA-sinA)
sin² A cosA (sinA-cosA) cos² A sinA (sinA-cosA)
sin³ A-cos³ A sinA.cosA(sinA-cos)
(sinA cosA) (sin² A+ cos² A+sinAcosA) [as, a³ - b³ = (a - b)(a² + b² + ab) & (sin²0 +
sinA.cosA(sin cosA)
cos²0 = 1]
(1+sinA.cosA) sinA.cosA
1 sinA.cosA
sinA.cosA sinA.cos.A
secA.cosecA + 1
tanA (1-1/tanA)
(1/tanA) (1-tanA)
tan² A (tanA-1) 1 tanA(1-tanA)
1 tan(1-tanA
1-tan³ A tanA (1-tanA)
tan² A (1-tanA)
(1-tanA){(1+tan² A)+tanA} tanA (1-tanA)
sec² A+tanA tanA
1 cos² A cosAsinA + tanA tanA
secA.cosecA + 1
Similar questions
Hindi,
1 month ago
Science,
1 month ago
Science,
1 month ago
Hindi,
3 months ago
Social Sciences,
3 months ago
Environmental Sciences,
10 months ago