Math, asked by umasalunke814, 9 days ago

prove that cotA/2+cotB/2+cotC/2=s2/∆​

Answers

Answered by mathdude500
18

Given Question

Prove that

\rm :\longmapsto\:cot\dfrac{A}{2} + cot\dfrac{B}{2} + cot\dfrac{C}{2} = \dfrac{ {s}^{2} }{\triangle }

 \green{\large\underline{\sf{Solution-}}}

Consider, LHS

\rm :\longmapsto\:cot\dfrac{A}{2} + cot\dfrac{B}{2} + cot\dfrac{C}{2}

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{ tan \frac{A}{2} =  \frac{r}{s - a} \: }}} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{s - a}{r} +  \dfrac{s - b}{r} +  \dfrac{s - c}{r}

On taking LCM, we get

\rm \:  =  \: \dfrac{s - a + s - b + s - c}{r}

\rm \:  =  \: \dfrac{3s - (a + b +  c)}{r}

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{ a + b + c = 2s \: }}} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{3s - 2s}{r}

\rm \:  =  \: \dfrac{s}{r}

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{ r =  \frac{\triangle }{s}}}} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{s}{ \:  \:  \: \dfrac{\triangle}{s}  \:  \:  \: }

\rm \:  =  \: \dfrac{ {s}^{2} }{\triangle }

Hence,

\rm\implies \:\:\boxed{\tt{ cot\dfrac{A}{2} + cot\dfrac{B}{2} + cot\dfrac{C}{2} = \dfrac{ {s}^{2} }{\triangle } }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\boxed{\tt{ sin \frac{A}{2} =  \sqrt{ \frac{(s - b)(s - c)}{bc} } \: }} \\

\boxed{\tt{ sin \frac{B}{2} =  \sqrt{ \frac{(s - a)(s - c)}{ac} } \: }} \\

\boxed{\tt{ sin \frac{C}{2} =  \sqrt{ \frac{(s - a)(s - b)}{ab} } \: }} \\

\boxed{\tt{ cos\frac{A}{2} =  \sqrt{ \frac{s(s - a)}{bc} } \: }} \\

\boxed{\tt{ cos\frac{B}{2} =  \sqrt{ \frac{s(s - b)}{ca} } \: }} \\

\boxed{\tt{ cos\frac{C}{2} =  \sqrt{ \frac{s(s - c)}{ab} } \: }} \\

\boxed{\tt{tan\frac{A}{2} =  \sqrt{ \frac{(s - b)(s - c)}{s(s - a)} } \: }} \\

\boxed{\tt{tan\frac{B}{2} =  \sqrt{ \frac{(s - a)(s - c)}{s(s - b)} } \: }} \\

\boxed{\tt{tan\frac{C}{2} =  \sqrt{ \frac{(s - a)(s - b)}{s(s - c)} } \: }} \\

Similar questions