Math, asked by danish8327, 10 months ago

Prove that (cotA - CosA)/(cotA+ cosA)= (cosec A- 1)/(CosecA+1)

Answers

Answered by harish2005725
27

Answer:

I hope it will be helpful thank you

Attachments:
Answered by jitumahi435
12

To prove that, \dfrac{\cot A - \cos A}{\cot A + \cos A}=\dfrac{\csc A -1}{\csc A +1}.

Solution:

L.H.S. = \dfrac{\cot A - \cos A}{\cot A + \cos A}

Using the trigonometric identity,

\cot A = \dfrac{\cos A}{\sin A}

= \dfrac{\dfrac{\cos A}{\sin A}- \cos A}{\dfrac{\cos A}{\sin A}+ \cos A}

=\dfrac{\dfrac{\cos A-\cos A\sin A}{\sin A}}{\dfrac{\cos A+\cos A\sin A}{\sin A}}

=\dfrac{\cos A-\cos A\sin A}{\cos A+\cos A\sin A}

Taking \cos A as common numerator and denominator, we get

=\dfrac{\cos A(1-\sin A)}{\cos A(1+\sin A)}

=\dfrac{1-\sin A}{1+\sin A}

Dividing nemerator and denominator by \sin A, we get

=\dfrac{\dfrac{1-\sin A}{\sin A}}{\dfrac{1+\sin A}{\sin A}}

=\dfrac{\dfrac{1}{\sin A}-1}{\dfrac{1}{\sin A}+1}

Using the trigonometric identity,

\csc A = \dfrac{1}{\sin A}

= \dfrac{\csc A -1}{\csc A +1}

= R.H.S., proved.

Hence, \dfrac{\cot A - \cos A}{\cot A + \cos A}=\dfrac{\csc A -1}{\csc A +1}, proved.

Similar questions