Math, asked by myogiraju, 10 months ago

prove that cotA -cosA/cotA+cosA=cosecA-1/cosecA+1​

Answers

Answered by anjalikumawat71
2

Answer:

I hope it helps you

please mark it brainliest

Attachments:
Answered by Anonymous
8

{\red{\underline{\underline{\huge{\mathtt{Solution:-}}}}}}

\frac{cotA-cosA}{cotA+cosA}

★We know cotA=\frac{cosA}{sinA}

\frac{\frac{cosA}{sinA}-cosA}{\frac{cosA}{sinA}+cosA}

\frac{\frac{cosA(1-sinA)}{sinA}}{\frac{cosA(1+sinA)}{sinA}}

\frac{cosA(1-sinA)}{sinA}×\frac{sinA}{cosA(1+sinA)}

\frac{1-sinA}{1+sinA}

★We know sinA= \frac{1}{cosecA}

\frac{1-\frac{1}{cosecA}}{1+\frac{1}{cosecA}}

\frac{\frac{cosecA-1}{cosecA}}{\frac{cosecA+1}{cosecA}}

\frac{cosecA-1}{cosecA}×\frac{cosecA}{cosecA-1}

{\green{\large{\bold{\frac{cosecA-1}{cosecA+1}}}}}

Hence proved______!!

Similar questions