Math, asked by dhipinsahni6660, 11 months ago

Prove that cota-cosa=/cota+cosa=coseca-1/coseca-1

Answers

Answered by sandy1816
1

Step-by-step explanation:

cota-cosa/cota+cosa

=(cosa/sina)-cosa/(cosa/sina)+cosa

=cosa-sinacosa/cosa+sinacosa

=1-sina/1+sina

=coseca-1/coseca+1

Answered by umiko28
6

 \small\mathbb{QUESTION \to: }

Prove that cotA-cosA/cotA+cosA=cosecA-1/cosecA-1

\small\mathbb{SOLUTION \leadsto: A} \\  \\  \sf\ \frac{cotA  -  cosA}{cotA + cosA}  \\  \\  \sf\ \implies   \frac{ \frac{cosA}{sinA } - cos A}{{ \frac{cosA}{sinA } } + cosA}\\  \\  \sf\ \implies  \frac{ \frac{cosA - sinAcosA}{ \cancel{sinA}} }{ \frac{cosA + sinAcosA}{ \cancel{sinA}}}  \\  \\  \sf\ \implies \frac{cosA - sinAcosA}{cosA + sinAcosA}   \\  \\  \sf\ \implies   \frac{cosA(1 - sinA)}{cosA(1 + sinA)} \\  \\  \sf\ \implies \frac{1 - sinA}{1 + sinA}  \\  \\  \sf\ \implies \frac{1 -  \frac{1}{cosecA} }{1 +  \frac{1}{cosecA} }   \\  \\ \sf\ \implies  \frac{ \frac{cosecA - 1}{ \cancel{cosecA}} }{ \frac{cosecA + 1}{ \cancel{cosecA} }}  \\  \\   \sf\boxed{ \sf{\implies   \frac{cosecA  - 1}{cosecA + 1}} \:  \:  \:  \:  \ddot \smile}

Similar questions