Math, asked by dipadnathasingha, 1 year ago

Prove that (cotA-cosA)/(cotA+cosA) = (cosecA-1)/(cosecA+1)

Answers

Answered by mysticd
548
lhs = (cotA - cosA)/(cotA+cosA)
=(cosA/sinA - cosA)/(cosA/sinA + cosA)

=cosA(1/sinA - 1)/cosA(1/sinA + 1)

= (1/sinA -1)/(1/sinA+1)
=(cosecA-1)/(cosecA+1) since 1/sinA= cosecA
=rhs
Answered by TANU81
438
Hi there ♥️

 \frac{ \cot\alpha - cosa }{cota \:  + \:  cosa}  =  \\  \\  \frac{ \frac{cosa}{sina}  - cosa}{ \frac{cosa}{sina} + cosa }  \\  \\
 \frac{cosa( \frac{1}{sina \:  } - 1) }{cosa (\frac{1}{sina}  + 1)}  \\  \\  =   \frac{ \frac{1}{sina}  - 1}{ \frac{1}{sina}  + 1}  = \\  \\  \frac{coseca - 1}{coseca + 1}

=RHS

Hence proved ✅✅

Thanks :)
Similar questions