Math, asked by SujalGurung, 11 months ago

prove that cotA+cosecA-1/cotA-cosecA+1=1+cosA/sinA​

Answers

Answered by unsungwriter
20

see firstly understand one thing wherever you will see cota+coseca-1 remember one thing that 1 is equal to the formula cosec^2-cot^2=1

and at last substitute the value OF cosec theta and and cot theta and take THEIR LCM.

Attachments:
Answered by sandy1816
0

 \frac{tanA}{1 - cotA}  +  \frac{cotA}{1 - tanA}  \\  \\  =  \frac{ \frac{sinA}{cosA} }{ \frac{sinA - cosA}{sinA} }  +  \frac{ \frac{cosA}{sinA} }{ \frac{cosA - sinA}{cosA} }  \\  \\  =  \frac{ {sin}^{2} A}{cosA(sinA - cosA)}  -  \frac{ {cos}^{2}A }{sinA(sinA - cosA)}  \\  \\  =  \frac{ {sin}^{3} A -  {cos}^{3}A }{sinAcosA(sinA - cosA)}

 =  \frac{1 + sinAcosA}{sinAcosA}  \\  \\  = 1 + secAcosecA

Similar questions