Math, asked by lokesh3328, 1 year ago

prove that (cotA-cosecA) ² =1-cosA/1+cosA

Answers

Answered by MOSFET01
9
\huge{\bold{\underline{Solution}}}

Take LHS

(cot\: A \: - \: cosec \: A)^{2} \: = \: \dfrac{1 \: - \: cos \: A}{1\: + \: cos \: A}

\implies \Big(\dfrac{cos\: A}{sin\: A}\: - \: \dfrac{1}{sin\: A}\Big)^{2}

\implies \Big(\dfrac{cos\: A \: - \: 1}{sin\: A}\Big)^{2}

\implies \dfrac{(cos\: A \: - \: 1)^{2}}{sin^{2}\: A}

\implies \dfrac{(cos\: A \: - \: 1)^{2}}{(1 \: - \: cos^{2}\: A)}

\implies - \: \dfrac{(cos\: A \: - \: 1)^{2}}{(cos^{2} \: A \: - \: 1)}

\implies - \: \dfrac{(cos\: A \: - \: 1)^{2}}{(cos^{2} \: A \: - \: 1^{2})}

\implies - \: \dfrac{(cos\: A \: - \: 1)^{2}}{(cos \: A \: - \: 1)(cos\: A \: + \: 1)}

\implies - \: \dfrac{(cos\: A \: - \: 1)}{(cos\: A \: + \: 1)}

\implies\: \dfrac{(1 \: - \: cos\: A )}{(1 \: + \: cos\: A)}

\boxed{\boxed{LHS = RHS}}

Hence Proved

Thanks

MOSFET01: oh sorry i think mistake give me time
Similar questions