Math, asked by Mohitmishra11, 1 year ago

prove that cotA. cot 2A+cot2A.cot3A+2=cotA.(CotA-cot3A)

Answers

Answered by SHIVAANSHSINGH
8
LHS = cot A . cot 2A − cot 2A . cot 3A − cot 3A . cot A

=cot A . cot 2A − cot 3A(cot 2A + cot A)

=cot A . cot 2A − cot (2A + A)(cot 2A + cot A)

=cot A . cot 2A − [cot 2A . cot A − 1cot 2A + cot A](cot 2A + cot A)

=cot A . cot 2A − cot 2A . cot A + 1

=1 =RHS

Mohitmishra11: bhaijaan questiome to +value thee par tumne to -value le lii
Mohitmishra11: -value se nahi prove ho Raha
Answered by Swarnimkumar22
12

\bold{\huge{\underline{Solution-}}}

LHS = cotA.cot2A + cot2A.cot3A+2

 \bf \: (cot2A.cotA + 1) + (cot3A.cot2A + 1) \\  \\  \bf \: ( \frac{cos2A}{sin2A}  \times  \frac{cosA}{sinA}  + 1) + ( \frac{cos3 \: A}{sin3 \:A }  \times  \frac{cos \: 2A}{sin2 \: A}  + 1) \\  \\  \bf \:  \frac{cos2 \:A \times cosA + sin2A \:  \times sin A}{sin \: 2A \times sin \:A }  +  \frac{cos \: 3A \times cos2 \: A + sin3 \:A \times sin2 \:  A}{sin3 \: A \times sin2 \: A}  \\  \\  \bf \:  \frac{cos(2 \:A - A )}{sin2 \: A \times sin \:A }  +  \frac{cos \: A}{sin3 \:A \times sin2 \: A }  \\  \\ \bf \:  cos \: A( \frac{1}{sin2 \: A \times sin \:A }  +  \frac{1}{sin \: 3A \times sin2 \: A} ) \\  \\  \bf \frac{cos \: A}{sin \: A} ( \frac{sinA}{sin2 \: A \times sinA}  +  \frac{sin \: A}{sin3 \:A \times sin2A } ) \\  \\ \bf cotA( \frac{sin2 \: A - A}{sin2A \times sinA}  +  \frac{sin3A - 2A}{sin3A \times sin2A} ) \\  \\  \bf \: cotA( \frac{sin2A  cosA - cos2A  sinA}{sin2A \times sinA}  +  \frac{sin 3Acos2A - cos3Asin2A}{sin3A \times sin2A} ) \\  \\  \bf \: cotA \{ \: (cotA -cot 2A) + (cot2A -cot 3A) \} \\  \\  \bf \: cotA \times (cotA - cot3A)

Similar questions