Math, asked by kashiskummar8664, 1 month ago

Prove that cotA cot2A- cot 2A cot3A - Cot3A CotA = 1

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

We know,

\rm :\longmapsto\:3A = 2A + A

So,

\rm :\longmapsto\:cot3A = cot(2A + A)

\rm :\longmapsto\:cot3A = \dfrac{cot2A \: cotA \:  -  \: 1}{cot2A + cotA}

\rm :\longmapsto\:cot3A \: cotA + cot3A \: cot2A = cot2A \: cotA - 1

\rm :\longmapsto\:cotA \: cot2A  -  cot2A \: cot3A - cot3A \: cotA  = 1

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{ \tt{ \: sin(x + y) = sinx \: cosy + cosx \: siny \: }}

\boxed{ \tt{ \: sin(x  -  y) = sinx \: cosy  -  cosx \: siny \: }}

\boxed{ \tt{ \: cos(x + y) = cosx \: cosy  -  sinx \: siny \: }}

\boxed{ \tt{ \: cos(x  -  y) = cosx \: cosy   + sinx \: siny \: }}

\boxed{ \tt{ \: tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany} \: }}

\boxed{ \tt{ \: tan(x  -  y) =  \frac{tanx -  tany}{1 + tanx \: tany} \: }}

\boxed{ \tt{ \: cot(x + y) =  \frac{cotx \: coty \:  - 1}{coty + cotx} \: }}

\boxed{ \tt{ \: cot(x  -  y) =  \frac{cotx \: coty \: +  1}{coty  -  cotx} \: }}

Similar questions