Prove that cotA-tanA=2cos^A-1÷sinAcosA
Answers
Answered by
52
Hey!
______________
cot A - tan A = 2 cos²A - 1 / sin A cos A
L.H.S
cot A - tan A
(cos A / sin A) - (sin A / cos A)
cos²A - sin² A / cos A sin A
We know,
cos²A + sin²A = 1
sin²A = 1 - cos²A
So,
cos²A - ( 1 - cos²A) / cos A sin A
cos²A - 1 + cos²A / cos A sin A
= 2 cos²A - 1 / cos A sin A
L.H.S = R.H.S
Proved.
______________
Hope it helps...!!!
______________
cot A - tan A = 2 cos²A - 1 / sin A cos A
L.H.S
cot A - tan A
(cos A / sin A) - (sin A / cos A)
cos²A - sin² A / cos A sin A
We know,
cos²A + sin²A = 1
sin²A = 1 - cos²A
So,
cos²A - ( 1 - cos²A) / cos A sin A
cos²A - 1 + cos²A / cos A sin A
= 2 cos²A - 1 / cos A sin A
L.H.S = R.H.S
Proved.
______________
Hope it helps...!!!
Anonymous:
Awesome Answer :)
Answered by
14
HEY
HERE IS ANSWER.
TO PROVE:
cotA-tanA= 2 cos^2A-1/sinA*cosA
LHS
(since
cot= cos /sin
tan=sin/cos)
take LCM
we know that
sin^2A=1-cos^2A
so
hence
LHS=RHS
HOPE IT HELPS
THANKS
HERE IS ANSWER.
TO PROVE:
cotA-tanA= 2 cos^2A-1/sinA*cosA
LHS
(since
cot= cos /sin
tan=sin/cos)
take LCM
we know that
sin^2A=1-cos^2A
so
hence
LHS=RHS
HOPE IT HELPS
THANKS
Similar questions