Math, asked by seejasasibg, 1 year ago

Prove that cotA-tanA=2cos^A-1÷sinAcosA

Answers

Answered by Nikki57
52
Hey!

______________

cot A - tan A = 2 cos²A - 1 / sin A cos A

L.H.S

cot A - tan A

(cos A / sin A) - (sin A / cos A)

cos²A - sin² A / cos A sin A

We know,
cos²A + sin²A = 1
sin²A = 1 - cos²A

So,

cos²A - ( 1 - cos²A) / cos A sin A

cos²A - 1 + cos²A / cos A sin A

= 2 cos²A - 1 / cos A sin A

L.H.S = R.H.S
Proved.

______________

Hope it helps...!!!

Anonymous: Awesome Answer :)
Nikki57: Thanks :)
Anonymous: Welcome ;-) , aapne Moderator team kyu chhore !
fanbruhh: perfect
Nikki57: Thanks! And Thanks for brainliest! ^^
Nikki57: Thank you! :)
IITGenius: nice
seejasasibg: Thanks
Answered by fanbruhh
14
HEY

HERE IS ANSWER.

TO PROVE:

cotA-tanA= 2 cos^2A-1/sinA*cosA

LHS

 \frac{cos \: a}{sin \: a} - \frac{sin \: a}{cos \: a}

(since
cot= cos /sin

tan=sin/cos)

take LCM

 \frac{cos^{2} a - sin^{2}a }{sin \: a \times \: cos \: a}
we know that

sin^2A=1-cos^2A

so

 \frac{cos ^{2} a - 1 + cos^{2} a}{sin \: a \times cos \: a}

hence

 \bf{ \frac{2cos^{2} a - 1 }{sin \: a \times cos \: a}}
LHS=RHS

HOPE IT HELPS

THANKS
Similar questions