Math, asked by rauhanika658, 1 year ago

prove that CotA + tanA = 2cosec2A

Answers

Answered by Swarnimkumar22
18
\bold{\huge{Hay!!}}


\bold{Dear\:user!!}



\bold{\underline{Question-}}


prove that CotA + tanA = 2cosec2A


\bold{\underline{Answer-}}


LHS = cotA + tanA


 =  >  \:  \frac{cos \: a}{sin \:   a}  +  \frac{sin \: a}{cos \: a}  \\  \\  \\  \\  =  >  \frac{ {cos}^{2} a +  {sin}^{2} a}{sin \: a \: cos \: a}  \\  \\  \\  =  >  \frac{1}{sin \: a \: cos \: a}  \\  \\  \\  =  >  \frac{2}{2sin \: a \: cos \: a}  \\  \\  \\  =  >  \frac{2}{sin2a}  \\  \\  =  > 2cosec2a

Satwikpathak03: where the cos a went
Swarnimkumar22: we know that cot A = cos A / sinA
Satwikpathak03: no i was asking that in 5step
Similar questions