prove that cotA-tanA=2cotA
Answers
Answered by
2
solution
:-
LHS = cot A - tan A
= cotA - 1/cotA
= (cot²A - 1)/cotA ………………. LHS
RHS = 2 cot2A
=2 *(1-tan²A) / 2tanA
= 2 *{ 1 - (1/cot² A) } /2tanA
= 2 *{(cot²A - 1) / cot²A} / {(2/cotA)}
= 2 * {(cot²A -1) / (2cotA) }
= ( cot²A -1 ) / cotA ……………. RHS
=> LHS = RHS
pls follow tannuranna 59 in my following and me ✌️
Answered by
2
Answer:
Step-by-step explanation:
cotA-tanA
=cosA/sinA-sina/cosA
=(cos²A-sin²A)/sinA.cosA
=(cos2A)/(1/2.sin2A)
=2.(cos2A/sin2A)
=2.cot2A , Proved.
Similar questions
Math,
5 months ago
Social Sciences,
5 months ago
Math,
10 months ago
English,
10 months ago
English,
1 year ago