Math, asked by mprasanta, 1 year ago

Prove that
CotA X CosA / CotA+CosA = CotA - CosA / CotA X CosA

Answers

Answered by Anonymous
31
Answer: (cotA-cosA)/cotAcosA

Step by step explaination:

cotAcosA/cotA+cosA

=> [(cosA/sinA)cosA]/[(cosA/sinA)+cosA]

=> (cos²A/sinA)/[(cosA+sinAcosA)/sinA]

➡️ cos²A/cosA(1+sinA)

➡️ cosA/(1+sinA)

➡️ [cosA(1-sinA)]/[(1+sinA)(1-sinA)]

=> [cosA(1-sinA)]/(1-sin²A)

=> (cosA-cosAsinA)/cos²A

=> [(cosA-cosAsinA)/sinA]/(cos²A/sinA)

▪️ [(cosA/sinA)-(cosAsinA/sinA)]/(cosA/sinA)cosA ▪️

=> (cotA-cosA)/cotAcosA

▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️

Hence, Proved that CotA X CosA / CotA+CosA = CotA - CosA / CotA X CosA

▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️

Similar questions