Prove that:
cotQ-1/2-sec2Q=cotQ/1+tanQ
Answers
Answered by
0
Step-by-step explanation:
Given:-
(Cot Q -1)/(2-Sec^2Q)
To Prove :-
(Cot Q -1)/(2-Sec^2Q) = CotQ/(1+tanQ)
Proof:-
LHS :-
(Cot Q -1)/(2-Sec^2 Q)
=> (Cot Q -1)/(1+1-Sec^2 Q)
We know that
Sec^2 A - Tan^2 A = 1
=> (Cot Q -1)/ (1-Tan^2 Q)
=> [(1/Tan Q)-1]/[(1+Tan Q)(1-Tan Q)]
Since (a+b)(a-b)=a^2-b^2
=> [(1-Tan Q)/Tan Q ]/[(1+Tan Q)(1-Tan Q)]
On cancelling (1- Tan Q)
=> (1/TanQ )/(1+Tan Q)
=> Cot Q /(1+Tan Q)
Since Cot A = 1/Tan A
=> RHS
LHS = RHS
Hence, Proved
Used formulae:-
- Sec^2 A - Tan^2 A = 1
- Cot A = 1/Tan A
- (a+b)(a-b)=a^2-b^2
Similar questions