Math, asked by jahnavi70, 10 months ago

prove that (cube root of 3x -y) is a factor of p(x,y)=405x^6 + 45y^6-270x^3y^3​

Answers

Answered by Swarup1998
5

Given: p(x,y)=405x^{6}+45y^{6}-270x^{3}y^{3}

To prove: (\sqrt[3]{3}x-y) a factor of p(x,y)

Proof:

Now, 405x^{6}+45y^{6}-270x^{3}y^{3}

=45\:(9x^{6}+y^{6}-6x^{3}y^{3})

=45\:[(3x^{3})^{2}+(y^{3})^{2}-2\times 3x^{3}\times y^{3}

=45\:(3x^{3}-y^{3})^{2}

=45\:\{(\sqrt[3]{3}x)^{3}-(y)^{3}\}^{2}

=45\:[(\sqrt[3]{3}x-y)\:\{(\sqrt[3]{3}x)^{2}+\sqrt[3]{3}xy+y^{2}\}]^{2}

\longrightarrow This shows that (\sqrt[3]{3}x-y) is a factor of p(x,y).

Hence proved.

Formula used:

  • a^{2}-2ab+b^{2}=(a-b)^{2}

  • a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})
Similar questions