Prove that D = b^2 -4ac
Answers
Answered by
0
ax^2+bx+c=0
Multiply both sides by a :
\implies a^2x^2+abx+ac=0
Transpose ac to the other side :
\implies a^2x^2+abx=-ac
Add b²/4 on both sides :
\implies a^2x^2+abx+\frac{b^2}{4}=\frac{b^2}{4}-ac
Perfect square on the right hand side :
\implies a^2x^2+2\times a\times \frac{b}{2}\times x+\frac{b^2}{4}=\frac{b^2}{4}-ac
\implies (ax+\frac{b}{2})^2=\frac{b^2-4ac}{4}
Take square root both sides :
\implies ( ax+\frac{b}{2})=\frac{\pm \sqrt{b^2-4ac}}{2}
Transpose b/2 to the other side :
\implies ax=\frac{-b}{2}+\frac{\pm\sqrt{b^2-4ac}}{2}
\implies ax=\frac{-b\pm\sqrt{b^2-4ac}}{2}
\implies x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
Hence it is proved that :
Either\:x=\frac{-b+\sqrt{b^2-4ac}}{2a}\\\\Or\:x=\frac{-b-\sqrt{b^2-4ac}}{2a}
Similar questions