Math, asked by nnmeeravali147852369, 10 months ago

prove that del^2f(r) = f"(r) + (2/r) f'(r) where r = sqrt(x^2+y^2+z^2)

Answers

Answered by poonammishra148218
1

Answer:

Proved

Step-by-step explanation:

Step 1: For calculating the derivative of the composition of two or more functions, use the Chain Rule formula. For composite functions, the differentiation chain rule is defined. The chain rule, for instance, describes the derivative of the composite of two functions, f and g, if they are functions.

Step 2: By using the chain rule, we have

\frac{\partial f}{\partial x}=\frac{d f}{d r} \cdot \frac{\partial r}{\partial x}$$

and

$$\begin{aligned}\frac{\partial^2 f}{\partial x^2} & =\frac{\partial}{\partial x}\left(\frac{d f}{d r}\right) \cdot \frac{\partial r}{\partial x}+\frac{d f}{d r} \cdot \frac{\partial^2 r}{\partial x^2} \\& =\frac{\partial^2 f}{\partial r^2} \cdot\left(\frac{\partial r}{\partial x}\right)^2+\frac{d f}{d r} \cdot \frac{\partial^2 r}{\partial x^2} \\& =\frac{\partial^2 f}{\partial r^2} \cdot\left(\frac{x}{r}\right)^2+\frac{d f}{d r} \cdot\left(\frac{1}{r}-\frac{x^2}{r^3}\right)\end{aligned}$$

Thus,

$$\begin{aligned}\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}+\frac{\partial^2 f}{\partial z^2} & =\frac{\partial^2 f}{\partial r^2} \cdot\left[\left(\frac{x}{r}\right)^2+\left(\frac{y}{r}\right)^2+\left(\frac{z}{r}\right)^2\right] \\& +\frac{d f}{d r} \cdot\left(\frac{3}{r}-\frac{x^2+y^2+z^2}{r^3}\right) \\& =\frac{\partial^2 f}{\partial r^2}+\frac{2}{r} \frac{d f}{d r}\end{aligned}$$

Learn more about similar questions visit:

https://brainly.in/question/2434384?referrer=searchResults

https://brainly.in/question/18488267?referrer=searchResults

#SPJ1

Similar questions