Math, asked by pavyasingh, 1 day ago

Prove that derivative of even function is odd function and derivative of odd function is even function​

Answers

Answered by mathdude500
29

\large\underline{\sf{Solution-a}}

To prove that derivative of even function is odd.

Let assume that f(x) be even function.

We know,

A function f(x) is said to be even function iff f(- x) = f(x).

So, we have

\rm \: f( - x) = f(x)

On differentiating both sides w. r. t. x, we get

\rm \:\dfrac{d}{dx}  f( - x) =\dfrac{d}{dx} f(x)

\rm \: f'( - x)\dfrac{d}{dx}( - x) = f'(x) \\

\rm \: f'( - x)( - 1) = f'(x) \\

\rm \:  - f'( - x) = f'(x) \\

\rm \:  f'( - x)  \: = \:  -  \:  f'(x) \\

We know

A function f(x) is said to be odd function iff f(- x) = - f(x)

So, using this definition,

\rm\implies \:f'(x) \: is \: an \: odd \: function \\

\large\underline{\sf{Solution-b}}

To prove that derivative of odd function is even.

Let assume that f(x) be an odd function.

So, by definition of odd function.

\rm \: f( - x) =  - f(x) \\

On differentiating both sides w. r. t. x, we get

\rm \:\dfrac{d}{dx}  f( - x) \:  =  \: -  \: \dfrac{d}{dx} f(x) \\

\rm \: f'( - x)( - 1) \:  =   \: -  \: f'(x) \\

\rm \: f'( - x) \:  =  \: f'(x) \\

So, by definition of even function, we get

\rm\implies \:f'(x) \: is \: an \: even \: function \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by Anonymous
28

 \sf \underline \purple{Solution:−}

 : \longmapsto\rm{f \: is \: an \: even \: function. }

\longmapsto\rm{f ( - x) = f(x)}

Take the derivative both sides :-

\longmapsto\rm{ \frac{d}{dx}f( - x) =  \frac{d}{dx} f(x)  }

Use chain rule :-

\longmapsto\rm{ \frac{d}{dx} f( - x) \frac{d}{dx} ( - x) = f'(x) }

\longmapsto\rm{f'( - x)( - 1) = f'(x)}

\longmapsto\rm{f'( - x) =  - f'(x)}

 :\longmapsto\rm{f' \: is \: a \: odd \: function. }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf - \: sinx \\ \\ \sf tanx & \sf {sec}^{2}x \\ \\ \sf cotx & \sf - {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf - \: cosecx \: cotx\\ \\ \sf \sqrt{x} & \sf \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf {e}^{x} & \sf {e}^{x} \end{array}} \\ \end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

@Shivam

#BeBrainly

Similar questions