Math, asked by aasin269, 1 year ago

prove that:det(x+y x x, 5x+4y 4x 2x, 10x+8y 8x 3x ) =x^3

Answers

Answered by MaheswariS
3

\text{Consider,}

\left|\begin{array}{ccc}x+y&x&x\\5x+4y&4x&2x\\10x+8y&8x&3x\end{array}\right|

=\left|\begin{array}{ccc}x+y&x&x\\5x+4y&4x&2x\\0&80&-x\end{array}\right| R_3\implies\,R_3-2R_2

=\left|\begin{array}{ccc}x+y&x&0\\5x+4y&4x&2x\\0&80&-x\end{array}\right| R_1\implies\,R_1+R_3

\text{Expanding along first row}

=(x+y)(-4x^2-0)-x(-5x^2-4xy)+0

=-4x^2(x+y)-x(-5x^2-4xy)

=-4x^3-4x^2y+5x^3+4x^2y

=-4x^3+5x^3

=x^3

\therefore\bf\left|\begin{array}{ccc}x+y&x&x\\5x+4y&4x&2x\\10x+8y&8x&3x\end{array}\right|=x^3

Similar questions