Math, asked by sahiltayal321, 7 months ago

PROVE THAT DETERMINANT IS INDEPENDENT OF THETA​

Attachments:

Answers

Answered by Anonymous
44

Solution:-

Let

 \Delta =  \Bigg|\begin{array}{ccc}\sf x & \sf sin\theta&\sf cos\theta \\\sf -sin\theta&\sf -x&\sf 1\\\sf cos\theta&\sf 1&\sf x\end{array}\Bigg|

Now simplify we get

   \Delta =  \rm \: x\Bigg|\begin{array}{ccc}  \sf -x&\sf 1\\\sf 1&\sf x\end{array}\Bigg| -  \sin \theta\Bigg|\begin{array}{ccc}  \sf - \sin \theta&\sf 1\\\sf  \cos \theta&\sf x\end{array}\Bigg| +  \cos \theta \Bigg|\begin{array}{ccc}  \sf - \sin \theta &\sf  - x\\\sf  \cos\theta&\sf 1\end{array}\Bigg|

Now

 \rm  = \rm \: x \{( - x)(x) - (1)(1) \} -  \sin \theta \{( -  \sin \theta)(x) - (1) (\cos \theta) \} +  \cos\theta \{( -  \sin\theta)(1) - ( - x) \cos \theta \}

 \rm \:  = x( - x - 1) -  \sin\theta( - x \ \sin\theta -  \cos\theta) +  \cos\theta( -  \sin \theta + x  \cos \theta)

 \rm =  -  {x}^{2}  - x +  - x \sin ^{2} \theta  +  \sin \theta  \cos \theta - \sin \theta  \cos \theta + x \cos^{2} \theta

\rm =  -  {x}^{2}  - x +  - x \sin ^{2} \theta  +  \cancel{ \sin \theta  \cos \theta} -  \cancel{\sin \theta  \cos \theta} + x \cos^{2} \theta

 \rm \:  =  -  {x}^{2}  - x + x( \sin ^{2} \theta +  \cos ^{2} \theta)

we know that

 \sin ^{2} \theta +  \cos ^{2} \theta = 1

We get

 =  \rm -  {x}^{2}  - x + x

 = \rm-  {x}^{2}

So

 \rm  \therefore\rm \:  \theta \: is \: independent \: because \: thier \: is \: no \: term \: of \:  \theta \: in \: answer

:- HENCE PROVED

Similar questions