prove that diagonal of parallelogram bisect each other
Answers
Answered by
87
Let consider a parallelogram ABCD in which AB||CD and AD||BC.
In ∆AOB and ∆COD , we have
∠DCO=∠OAB (ALTERNATE ANGLE)
∠CDO= ∠OBA. (ALTERNATE ANGLE)
AB=CD. (OPPOSITE SIDES OF ||gram)
therefore , ∆ AOB ≅ ∆COD. (ASA congruency)
hence , AO=OC and BO= OD. (C.P.C.T)
Answered by
13
Answer:
Given : ||gm ABCD in which diagonals AC and BD bisect each other.
To Prove : OA = OC and OB = OD
Proof : AB || CD (Given)
∠1 = ∠2 (alternate ∠s)
∠3 = ∠4 = (alternate ∠s)
and AB = CD (opposite sides of //gm)
∆COD = ∆AOB (A.S.A. rule)
OA = OC and OB = OD
Hence the diagonal of parallelogram bisect each other .
Attachments:
Similar questions
English,
5 months ago
Math,
5 months ago
Math,
11 months ago
Math,
11 months ago
Social Sciences,
1 year ago