Math, asked by sabyasachi2005, 1 month ago

prove that \displaystyle\lim_{ x \rightarrow 0 } \left( \frac{ { \left( \cos ( \pi x ) \right) }^{ 2 } \sin ( \pi x ) }{ x } \right) = π​

Answers

Answered by mittalsapna19
78

To prove :-

 \displaystyle\lim_{ x \rightarrow 0 } \left( \frac{ { \left( \cos ( \pi x ) \right) }^{ 2 } \sin ( \pi x ) }{ x } \right) = π

Refer to the attachement

Attachments:
Answered by Mysteryboy01
1

✧═════════════•❁❀❁•══════════════✧\huge\color{Pink}\boxed{\colorbox{Black}{❥Mysteryboy01}}

✧═════════════•❁❀❁•══════════════✧

\huge\color{lime}\boxed{\colorbox{black}{⭐God Bless U⭐}}

\huge\mathbb\fcolorbox{Purple}{pink}{⭐Question⭐}

 \huge\star\underline{\mathtt\orange{❥Good} \mathfrak\blue{Mo }\mathfrak\blue{r} \mathbb\purple{ n}\mathtt\orange{in} \mathbb\pink{g}}\star\:

\huge\star\huge{ \pink{\bold {\underline {\underline {\red {Great Day }}}}}} \star

\huge\blue\bigstar\pink{Be Safe Always }

\huge\fbox \red{✔Que} {\colorbox{crimson}{est}}\fbox\red{ion✔}

The Question is Give below

\huge\color{Red}\boxed{\colorbox{black}{♡Answer ♡}}

The Answer is in Attachment

\huge\color{cyan}\boxed{\colorbox{black}{Mark as Brainlist ❤}}

Attachments:
Similar questions