Math, asked by yashrajput98, 11 months ago

prove that div ( curl v) -0​

Answers

Answered by Swarup1998
13

Proof:

Let, \mathsf{\vec{v}=x\hat{i}+y\hat{j}+z\hat{k}}

Now, div (curl \vec{v})

\mathsf{=\nabla. (\nabla\times \vec{v})}

=\nabla.\left|\begin{array}{ccc}\mathsf{\hat{i}}&\mathsf{\hat{j}}&\mathsf{\hat{k}}\\ \mathsf{\frac{\partial}{\partial x}}&\mathsf{\frac{\partial}{\partial y}}&\mathsf{\frac{\partial}{\partial z}}\\\mathsf{x}&\mathsf{y}&\mathsf{z}\end{array}\right|

\mathsf{=\nabla.[(\frac{\partial z}{\partial y}-\frac{\partial y}{\partial z})\hat{i}-(\frac{\partial z}{\partial x}-\frac{\partial x}{\partial z})\hat{j}+(\frac{\partial y}{\partial x}-\frac{\partial x}{\partial y})\hat{k}]}

\mathsf{=(\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}).[(\frac{\partial z}{\partial y}-\frac{\partial y}{\partial z})\hat{i}-(\frac{\partial z}{\partial x}-\frac{\partial x}{\partial z})\hat{j}+(\frac{\partial y}{\partial x}-\frac{\partial x}{\partial y})\hat{k}]}

\mathsf{=\frac{\partial}{\partial x}(\frac{\partial z}{\partial y}-\frac{\partial y}{\partial z})-\frac{\partial}{\partial y}(\frac{\partial z}{\partial x}-\frac{\partial x}{\partial z})+\frac{\partial}{\partial z}(\frac{\partial y}{\partial x}-\frac{\partial x}{\partial y})}

\mathsf{=\frac{{\partial}^{2}z}{\partial x\:\partial y}-\frac{{\partial}^{2}y}{\partial x\:\partial z}-\frac{{\partial}^{2}z}{\partial y\:\partial x}+\frac{{\partial}^{2}x}{\partial y\:\partial z}+\frac{{\partial}^{2}y}{\partial z\:\partial x}-\frac{{\partial}^{2}x}{\partial z\:\partial y}}

= 0 ,

where, \mathsf{\partial x\:\partial y=\partial y\:\partial x} ,

\mathsf{\partial y\:\partial z=\partial z\:\partial y}

and \mathsf{\partial z \:\partial x=\partial x \:\partial z}

Hence, proved.

Rules:

\mathsf{\nabla=\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}}

\mathsf{\hat{i}.\hat{i}=\hat{j}.\hat{j}=\hat{k}.\hat{k}=1}

\mathsf{\hat{i}.\hat{j}=\hat{j}.\hat{k}=\hat{k}.\hat{i}=0}

\mathsf{\vec{a}.\vec{b}=\vec{b}.\vec{a}}

Similar questions