Math, asked by ash3237, 7 months ago

Prove that div grad r^n = n(n+1) r^n-2​

Answers

Answered by pulakmath007
56

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO PROVE

 \sf{div \: grad \: ( {r}^{n} ) = n(n + 1)  \: {r}^{n - 2}  \: }

CONCEPT TO BE IMPLEMENTED

 \sf{div \: grad \: ( {r}^{n} ) =  { \nabla}^{2}  \: ( {r}^{n} )}

CALCULATION

 \sf{div \: grad \: ( {r}^{n} ) =  { \nabla}^{2}  \: ( {r}^{n} )}

 =  \displaystyle \sf{ \frac{ { \partial}^{2}( {r}^{n} )}{ \partial  {x}^{2} }  +\frac{ { \partial}^{2}( {r}^{n} )}{ \partial  {y}^{2} }   +\frac{ { \partial}^{2}( {r}^{n} )}{ \partial  {z}^{2} }   \: }

Now

 \sf{  {r}^{2} =  {x}^{2}  +  {y}^{2} +  {z}^{2}   \: }

Differentiating both sides with respect to x partially we get

 \displaystyle {\sf \: 2r \frac{ \partial r}{ \partial x}  = 2x}

 \therefore  \: \displaystyle {\sf \:  \frac{ \partial r}{ \partial x}  =  \frac{x}{r} }

Similarly

 \therefore  \: \displaystyle {\sf \:  \frac{ \partial r}{ \partial y}  =  \frac{y}{r} }

 \therefore  \: \displaystyle {\sf \:  \frac{ \partial r}{ \partial z}  =  \frac{z}{r} }

Now

\displaystyle \sf{ \frac{ { \partial}^{}( {r}^{n} )}{ \partial  {x}^{} } }

\displaystyle \sf{ = n  {r}^{n - 1} \frac{ { \partial}^{}{r}}{ \partial  {x}^{} }  }

\displaystyle \sf{  = n  {r}^{n - 1}  \times  \frac{x}{r}   }

\displaystyle \sf{   = x \: n  \:  {r}^{n - 2} }

Now

\displaystyle \sf{ \frac{ { \partial}^{2}( {r}^{n} )}{ \partial  {x}^{2} } }

\displaystyle \sf{ = n \bigg( {r}^{n - 2}   + (n - 2) {r}^{n - 3}x \:  \frac{ \partial r}{ \partial x} \bigg)}

\displaystyle \sf{ = n \bigg( {r}^{n - 2}   + (n - 2) {r}^{n - 4} \:  {x}^{2}  \bigg)}

Similarly

\displaystyle \sf{ \frac{ { \partial}^{2}( {r}^{n} )}{ \partial  {y}^{2} } }  = \displaystyle \sf{ = n \bigg( {r}^{n - 2}   + (n - 2) {r}^{n - 4} \:  {y}^{2}  \bigg)}

\displaystyle \sf{ \frac{ { \partial}^{2}( {r}^{n} )}{ \partial  {z}^{2} } }  = \displaystyle \sf{ = n \bigg( {r}^{n - 2}   + (n - 2) {r}^{n - 4} \:  {z}^{2}  \bigg)}

So

 \displaystyle \sf{ \frac{ { \partial}^{2}( {r}^{n} )}{ \partial  {x}^{2} }  +\frac{ { \partial}^{2}( {r}^{n} )}{ \partial  {y}^{2} }   +\frac{ { \partial}^{2}( {r}^{n} )}{ \partial  {z}^{2} }   \: }

\displaystyle \sf{ = n \bigg( 3{r}^{n - 2}   + (n - 2) {r}^{n - 4} \:(  {x}^{2}  +  {y}^{2}  +  {z}^{2})  \bigg)}

\displaystyle \sf{ = n \bigg( 3{r}^{n - 2}   + (n - 2) {r}^{n - 4} \: {r}^{2}   \bigg)}

\displaystyle \sf{ = n \bigg( 3{r}^{n - 2}   + (n - 2) {r}^{n - 2} \:  \bigg)}

\displaystyle \sf{ =  n (n  + 1) {r}^{n - 2} }

Therefore

 \sf{div \: grad \: ( {r}^{n} ) }\displaystyle \sf{ =  n (n  + 1) {r}^{n - 2} }

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Divergence of r / r^3 is

(a) zero at the origin

(b) zero everywhere

(c) zero everywhere except the origin

(d) nonzero

https://brainly.in/question/22316220

Answered by 1vsharma730
0

Answer:

Step-by-step explanation:

Similar questions