Math, asked by IRFAAN2072, 1 year ago

Prove that:
Do it fast

Attachments:

Answers

Answered by rizwan35
2
L.H.S.=
 log( \sqrt[3]{6 \frac{2}{9} } )  \\  \\  =  log( \frac{56}{9} )  {}^{ \frac{1}{3} }  \\  \\  =  \frac{1}{3}  log( \frac{56}{9} )  \\  \\  =  \frac{1}{3} ( log(56)  -  log(9) ) \\  \\ =   \frac{1}{3}  log(56)  -  \frac{1}{3}  log(9)  \\  \\  =  \frac{1}{3} ( log(8 \times 7)  -  \frac{1}{3}  log(3 )  {}^{2}  \\  \\  =  \frac{1}{3}  log(8)  +  \frac{1}{3}  log(7)  -  \frac{2}{3}  log(3)  \\  \\  =  \frac{1}{3}  log(2)  {}^{3}  +  \frac{1}{3}  log(7)  -  \frac{2}{3}  log(3)  \\  \\  =  \frac{3}{3}  log(2)  +  \frac{1}{3} ( log(7)  -2  log(3) ) \\  \\  =  \frac{1}{3} ( log(7)  - 2 log(3) ) +  log(2)

= R. H. S.


hope it helps...
Similar questions