Math, asked by thefight, 1 year ago

prove that equal chords of a circle are equidistant from the centre

Answers

Answered by Rishav2408
4
its just opp i did u can do by this process
Attachments:
Answered by BrainlyQueen01
5
Statement : There is one and only one circle passing through three given noncollinear points.

Given : AB and CD are two equal chords of the circle.

OM and ON are perpendiculars from the centre at the chords AB and CD.

To prove : OM = ON.
Construction : Join OA and OC.

Proof :

In ΔAOM and ΔCON,

OA = OC . (radii of the same circle)
MA = CN . (since OM and ON are perpendicular to the chords and it bisects the chord and AM = MB, CN = ND)

∠OMA = ∠ONC = 90°
ΔAOM ≅ ΔCON (R. H. S)
OM = ON (c. p. c. t.)

Equal chords of a circle are equidistant from the centre.
Attachments:
Similar questions