prove that equal chords of a circle subtend equal angles at the centre
Answers
Answered by
7
Given that :--:
IN CIRCLE C( O, r)
AB = PQ
To prove :--:
<AOB = <POQ
Proof :--:
In Triangle AOB and POQ
AB = PQ ( Given)
AO = PO ( Radii of circle)
BO = QO ( Radii of circle)
So,
Triangle AOB is congurent to triangle POQ
=> <AOB = <POQ ( C. P. C. T)
Hence Proved :::---:---:::
IN CIRCLE C( O, r)
AB = PQ
To prove :--:
<AOB = <POQ
Proof :--:
In Triangle AOB and POQ
AB = PQ ( Given)
AO = PO ( Radii of circle)
BO = QO ( Radii of circle)
So,
Triangle AOB is congurent to triangle POQ
=> <AOB = <POQ ( C. P. C. T)
Hence Proved :::---:---:::
Attachments:
Answered by
6
Proof : In△AOB and △COD
AO = CO [radii of same circle]
BO = DO [radii of same circle]
Chord AB = Chord CD [given]
⇒ △AOB ≅ △COD [by SSS congruence axiom]
⇒ ∠AOB = ∠COD. [c.p.c.t.
AO = CO [radii of same circle]
BO = DO [radii of same circle]
Chord AB = Chord CD [given]
⇒ △AOB ≅ △COD [by SSS congruence axiom]
⇒ ∠AOB = ∠COD. [c.p.c.t.
Similar questions