Science, asked by sanjeevegha45691, 4 months ago

prove that equivalent resistance R is related with resistance R1 and R2 as the following when connected in parallel 1 by R equals to 1/R1+1/R2​

Answers

Answered by Anonymous
0

 \huge  \mathcal \red{dear \: sanjeevegha}

 \huge  \mathcal \red{dear \: sanjeevegha}For series

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1 =r

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1 =r 1

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1 =r 1

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1 =r 1 +r

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1 =r 1 +r 2

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1 =r 1 +r 2

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1 =r 1 +r 2 (equivalent resistance) for parallel,

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1 =r 1 +r 2 (equivalent resistance) for parallel, R =

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1 =r 1 +r 2 (equivalent resistance) for parallel, R = r1

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1 =r 1 +r 2 (equivalent resistance) for parallel, R = r1 +

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1 =r 1 +r 2 (equivalent resistance) for parallel, R = r1 + r 21

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1 =r 1 +r 2 (equivalent resistance) for parallel, R = r1 + r 21

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1 =r 1 +r 2 (equivalent resistance) for parallel, R = r1 + r 21

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1 =r 1 +r 2 (equivalent resistance) for parallel, R = r1 + r 21 R 2

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1 =r 1 +r 2 (equivalent resistance) for parallel, R = r1 + r 21 R 2

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1 =r 1 +r 2 (equivalent resistance) for parallel, R = r1 + r 21 R 2 = r 1

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1 =r 1 +r 2 (equivalent resistance) for parallel, R = r1 + r 21 R 2 = r 1

 \huge  \mathcal \red{dear \: sanjeevegha}For seriesR 1 =r 1 +r 2 (equivalent resistance) for parallel, R = r1 + r 21 R 2 = r 1 +r 2

r 1

r 1

r 1 r 2

r 1 r 2

r 1 r 2

r 1 r 2

r 1 r 2 (equivalent resistance)

r 1 r 2 (equivalent resistance) ∴

r 1 r 2 (equivalent resistance) ∴ R 2

r 1 r 2 (equivalent resistance) ∴ R 2

r 1 r 2 (equivalent resistance) ∴ R 2

r 1 r 2 (equivalent resistance) ∴ R 2 R 1

r 1 r 2 (equivalent resistance) ∴ R 2 R 1

r 1 r 2 (equivalent resistance) ∴ R 2 R 1

r 1 r 2 (equivalent resistance) ∴ R 2 R 1 = r 1

r 1 r 2 (equivalent resistance) ∴ R 2 R 1 = r 1

r 1 r 2 (equivalent resistance) ∴ R 2 R 1 = r 1 r 2

r 1 r 2 (equivalent resistance) ∴ R 2 R 1 = r 1 r 2

r 1 r 2 (equivalent resistance) ∴ R 2 R 1 = r 1 r 2 (r 1 +r 2 ) 2

2

2

Please Mark as Brainliest answer And follow me!!

Similar questions