prove that every rhombus is a parallelogram pls give step by step solution
Answers
Answer:
To prove a quadrilateral is a rhombus, here are three approaches: 1) Show that the shape is a parallelogram with equal length sides; 2) Show that the shape's diagonals are each others' perpendicular bisectors; or 3) Show that the shape's diagonals bisect both pairs of opposite angles.
Answer:
Reason for statement 1: Given.
Statement 2:
image3.png
Reason for statement 2: Opposite sides of a rectangle are congruent.
Statement 3:
image4.png
Reason for statement 3: Given.
Statement 4:
image5.png
Reason for statement 4: Like Divisions Theorem.
Statement 5:
image6.png
Reason for statement 5: All angles of a rectangle are right angles.
Statement 6:
image7.png
Reason for statement 6: All right angles are congruent.
Statement 7:
image8.png
Reason for statement 7: Given.
Statement 8:
image9.png
Reason for statement 8: A midpoint divides a segment into two congruent segments.
Statement 9:
image10.png
Reason for statement 9: SAS, or Side-Angle-Side (4, 6, 8)
Statement 10:
image11.png
Reason for statement 10: CPCTC (Corresponding Parts of Congruent Triangles are Congruent).
Statement 11:
image12.png
Reason for statement 11: Given.
Statement 12:
image13.png
Reason for statement 12: If a triangle is isosceles, then its two legs are congruent.
Statement 13:
image14.png
Reason for statement 13: Transitivity (10 and 12).
Statement 14:
image15.png
Reason for statement 14: If a quadrilateral has four congruent sides, then it’s a rhombus.